Design For Planetary Health

Follow ArchaNatura On Facebook and Twitter

By Mark Lundegren


Architects, engineers, builders, developers, and planners have many ideas about optimal design. These include preferences and goals for the aesthetics, layout, materials, densities, spatial plan, and economics of buildings and our larger built environment.

All are important considerations, and can be essential to successful building and community design. But I would like to propose a simple, fundamental, and quite sweeping design principle that at once underlies and supersedes all other design issues and demands. This principle is consideration of whether the design or development aids or inhibits planetary health, which is my topic for today.

As I said, the idea is sweeping and fundamental. If you will give me a few minutes, I will first explain why this concern should be considered the first principle of natural design, and then outline how the principle readily can inform and guide other design and development ideas, across the modern world and for our common benefit.

The Design For Planetary Health infographic above describes two basic approaches to modern development – one primarily as it occurs today, the other how it might, if we are committed to planetary health and human sustainability. Please note that many of the ideas in the infographic are drawn from the work of the ecologist Walter Jehne, who you can learn about here and here. Let me also emphasize that my design for planetary health proposals do not involve either creating or living less vitally or robustly, only differently, or more intelligently and naturally.

Understanding why the promotion of planetary health is the first principle of natural design is fairly straightforward. Simply put, all design, building, technology, and indeed human action will have either a positive, negative, or neutral impact on the natural health or survivability of life and the ecosystems upon which we depend. While negative health impacts may be inconsequential when small or limited, as these cases increase they naturally undermine our capacity for further action, and even future life, and thus are irrational, paradoxical, inextensible, or unprincipled.

Further, since some human actions typically will be either unintentionally or clandestinely health negative, effort at positive health impacts are essential, if we are to achieve positive or at least neutral environmental health effects overall. And the only way to further this outcome fairly, and not overburden particular people and groups, is to make demands for comparable degrees of positive health impact the rule for all designs, developments, and endeavors. This may sound onerous, but in practice is normally a reasonable or fairly easily adopted standard. After all, living nature has been using this basic approach for millions of years, without obvious hardship, and indeed seemingly to its benefit.

There are many potential methods for achieving positive planetary health outcomes in the aggregate, and my infographic is not intended as a final word on the topic. But its framework may reflect our best current understanding of how we are most contributing to reduced planetary health, and the most direct, efficient, and reliable alternative to reverse and undo these trends. As you can see in the graphic, this alternative approach to modern infrastructure design addresses many of our most important human and environmental health issues today. These include global warming, climate change, ocean acidification, land aridification and desertification, agricultural soil loss, poor food quality, habitat loss, increased atmospheric carbon, and other forms of human pollution.

As I said, the infographic describes two basic approaches to human design and development, one broadly running contrary to natural ecological forces and another intended to work in concert with them. In the two approaches, the central design difference is their relative emphasis and use of hardscape and softscape conditions. By this, I mean land surfaces or coverings that either inhibit or promote: 1) natural water retention and cycling, 2) soil building and microbiological vitality, and 3) green land outcomes – or ones that are sunlight absorbing, photosynthetic, and shading.

Here are brief descriptions of each design model or archetype, to help you consider and use the infographic:

> Model 1: Agricultural and Urban Hardscape – as indicated, this model describes our dominant present-day approach to design and development in both rural and urban areas. Whether through the use of monocrop annual food systems or the laying of urban pavements, today we typically create periodic or permanent hard landscape surfaces that tend to shed, rather than retain, water. When this occurs, and especially at scale, a natural result is that soils are dried and eroded, instead of hydrated and strengthened. This directly leads to diminished and decarbonized soils, less vibrant soil microbiology and surface vegetation, more sunlight reflected into the air, the formation of heat domes, and perhaps most importantly, diminished natural water cycling. Reduced water cycling, in turn, promotes compounding land aridification and reduced natural cooling on a regional scale, often further reducing soil and plant health. In addition, our common use of fossil fuels takes ancient, deeply buried carbons and releases them into the modern atmosphere, which adds to this unnatural system of planetary drying and warming.

> Model 2: Porous Natural Softscape – in keeping with the infographic, a more natural and reversing alternative to this traditional approach is to redesign and re-create our contemporary communities and infrastructure with none or few of these features. In this alternative approach, our modern infrastructure is broadly re-patterned based on natural methods and conditions, notably ones favoring water-retaining and soil-shading porous softscapes, and where carbon-free and sunlight-based economics are the mainstays of life. Key design steps in this approach include the move to perennial and polycultural agriculture, re-greening and perhaps re-agriculturalizing desertified lands, similar re-greening and softscaping of urban areas, and movement to solar-autonomous buildings and transportation. As a re-naturalizing opposite of current design and land-use practices, we can expect these steps steadily to increase landmass water retention, improve soils, increase plant cover and photosynthesis, aid many marginalized species, reduce atmospheric carbon and ocean acidification, and restore natural weather patterns and hydrological cooling.

In one sense, our modern ecological and planetary health problems are complex, vast, and overwhelming. But in another and more important one, we can understand that many of the challenges we face are rooted in a small number of specific features of modern life. These features, or design decisions, are inherently antithetical to natural systems and planetary health, demonstrable as such, and readily actionable and changeable too.

Whatever your role in the design, creation, and use of our modern infrastructure and industrial systems, I would encourage you to explore these ideas and consider how your own actions and efforts might be made far more natural, aiding, healthy, and sustainable – for our planet and all people.

Mark Lundegren is the founder of ArchaNatura. 

Tell others about ArchaNatura…encourage modern natural design & sustainability!

3 thoughts on “Design For Planetary Health

  1. Good perspective. Greater humidity alone, or all other things being equal, may not fight and even may exacerbate a warming planet. More essential is work to re-green and shade the Earth’s land and soils – reducing hardscape and heat doming, restoring essential ground and inland water, promoting healthy water cycling and hydrological cooling, and sequestering atmospheric carbon.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.